Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors
نویسندگان
چکیده
Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal-oxide-semiconductor field-effect transistors MOSFETs are reported. The addition of edge disorder significantly reduces ON-state currents and increases OFF-state currents, and introduces wide variability across devices. These effects decrease as ribbon widths increase and as edges become smoother. However, the band gap decreases with increasing width, thereby increasing the band-to-band tunneling mediated subthreshold leakage current even with perfect nanoribbons. These results suggest that without atomically precise edge control during fabrication, MOSFET performance gains through use of graphene will be difficult to achieve in complementary MOS applications. © 2008 American Institute of Physics. DOI: 10.1063/1.2839330
منابع مشابه
High-Speed Ternary Half adder based on GNRFET
Superior electronic properties of graphene make it a substitute candidate for beyond-CMOSnanoelectronics in electronic devices such as the field-effect transistors (FETs), tunnel barriers, andquantum dots. The armchair-edge graphene nanoribbons (AGNRs), which have semiconductor behavior,are used to design the digital circuits. This paper presents a new design of ternary half a...
متن کاملAnalytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications
Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective ma...
متن کاملNumerical investigation of the effect of substrate surface roughness on the performance of zigzag graphene nanoribbon field effect transistors symmetrically doped with BN
The performance of field effect transistors comprised of a zigzag graphene nanoribbon that is symmetrically doped with boron nitride (BN) as a channel material, is numerically studied for the first time. The device merit for digital applications is investigated in terms of the on-, the off- and the on/off-current ratio. Due to the strong effect of the substrate roughness on the performance of g...
متن کاملTrilayer Graphene Nanoribbon Field Effect Transistor Analytical Model
The approaching scaling of Field Effect Transistors (FETs) in nanometer scale assures the smaller dimension, low-power consumption, very large computing power, low energy delay product and high density as well as high speed in processor. Trilayer graphene nanoribbon with different stacking arrangements (ABA and ABC) indicates different electrical properties. Based on this theory, ABA-stacked tr...
متن کاملMoS2 Nanoribbon Transistors: Transition From Depletion Mode to Enhancement Mode by Channel-Width Trimming
We study the channel width scaling of back-gated MoS2 metal–oxide–semiconductor field-effect transistors from 2 μm down to 60 nm. We reveal that the channel conductance scales linearly with channel width, indicating no evident edge damage for MoS2 nanoribbons with widths down to 60 nm as defined by plasma dry etching. However, these transistors show a strong positive threshold voltage (VT ) shi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008